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Abstract—The extended form of the identity of Somigliana, giving the displacement rate in terms of the
traction and the displacement rate on the boundary, invoives plastic and thermal strain rate. Because of
strong singularity of some kernel, the gradient of the displacement rate may be strictly evaluated by an
integro-differential expression. The paper shows how to derive the integral form of the gradient rate which
corrects some erToneous expressions reported in the literature.

INTRODUCTION
The boundary integral equation method to solve the three-dimensional problems of isotropic
elastic solids has been extended to the problems of plastic fiow[1, 2] and thermal loading{2, 3].
For given plastic deviatoric strain rate ¢é§ and thermal strain rate é] = a73), the displacement
rate i;(p) at any point p = (p,, ps, p3) satisfies the Somigliana identity{1, 2]
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+ jn Us(p, 9 (q) dog + f“ 3P, aXEH@) + €(q)) o, M

where ; is the traction rate f; = gyn; on the boundary a1}, f; is the prescribed body force rate
per unit volume, Uy(p, q) is the Kelvin-Somigliana tensor(1, 2, 4):
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r(p, q) being the distance between the points p and q, u is the shear modulus and » is the
Poisson ratio, X,(p, q) is the stress tensor corresponding to Ux(p, q):
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The traction vector corresponding to 2,y is Ty = Sy, ,
In eqn (1) we put y =1 for interior points and y = 1/2 for points belonging to the smooth
boundary.t The value y = 1/2 corresponds to the boundary constraint equation. The equation
for y=1 is referred to the field equation. The constraint equation together with the field

equation and the constitutive equation[1]:
e ot ypmoe

constitute the basic nonlinear system of equations used to solve the boundary vaiue problem.
Generally, an iterative scheme is used to solve these equations. First, one may determine the
solution of the boundary constraint equation for some plastic strain rate at some stage of the
iteration, then the gradient &, , is calculated from the field equation and from (4) one determines

$The case of singular boundary is discussed in Ref.[4).
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the plastic strain rate for the next stage. This procedure is well known in the literature.
However a difficulty may arise when we want to calculate the gradient field. Of course, the
correct definition is given by:

ip)=-[ - ; 2 u, '
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Differentiation has been applied to the kernels of the surface integrals. This is permissible
because the kernels d7T./dp, and dU,/dp, are regular at interior points, r(p, q) # 0, while the
kernel 3Uy/ap, of order 0(r7?) is integrable in (. Unfortunately, differentiation under the fourth
volume integral sign is not allowable, because of strong singularity of the kernel 32,/dp, the
behaviour of which is of order of 0(r%) as r—0. Differentiation of such an integral does not
obey to classical rule[S]. This fact has been ignored in the literature {2, 6]. The aim of this paper
is to derive a correct expression for the gradient rate. Applications will be given to the plastic
inclusion problem of Eshelby(7] and to the thermal inclusion problem.

CONVECTED DIFFERENTIATION OF SINGULAR INTEGRAL
It is obvious that the kernel 2,4(p, q) has an integrable singularity in {}. Let us show more
precisely that the volume integral

V(p)= f S(p, Q)eiiq) do, (6)
Bg(p)

where €° = é” + ¢é”, taken over the ball B,(p) of small radius #, centered at the point p, is of
order 0(n?). To prove it,'we assume €j(q) and its first and second derivatives to be continuous
in the neighbourhood of the point p. Let ¢° be expanded as follows:

€i{(q) = €§i(p) +(qu — Pr)EGAD) +- - M

Hence

V(p) = €ii(p) L » (P, @) do, + €fu(p) J’a ” (an = Pn)24i(p, @) dvg. t))

Using (3), the integrals of (8) are easily computed and given by:
[ Sutp@ds =0
Bq(’)
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where the constant C is
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Thus, the proof is complete. It is interesting to notice that (9) is independent of p. Hence, the

gradient 3V/ap,, = —~Cn’ejum is also of order 0(n2). We now write the field equation in the
following form:

i (p) = ~ f  Tu(p, QUiQ) dSo + f _ Ualp, Q@ dSo

+f Uu(p, ) (@) dvg + V() + f S0, EQ+El@)ds,  (10)
1] Q-B.(p)
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containing the integrals which can be differentiated under the integral sign, together with the
term V(p). After differentiation of (10), to within 0(n?), we drop the term 3V/ap, to obtain

i) =~ [ - Tu(p, Qi@ dSo+ [ == Uutp, Q1i(Q) dSo
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where », is the unit outward normal to the sphere 4B,. The fourth integral of (11), when n -0,
yields the principal value of the singular integral the existence of which has been proved in
[5, 8]. The last term over the surface of the sphere 4B, is nothing but the convected term due to
the fact that the domain ) — B, (p) changes with the position of the point p. It is precisely the
term which is ignored in the literature(2, 6].

Let us illustrate the concept of convected differentiation of singular integral by studying an
elementary example. Consider the line integral

+1

d
F(x) = t = log ll + x’
Of course, its derivative is F'(x)=(x-1)""'-(x + 1)\
Differentiation under the integral sign would be incorrect

+1 d t f
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In order to obtain the correct resuit, we take into account the convected terms at the end points of

the interval B, (x) =[x -5, x+ 7]

Fey= f*-" dt I' dt 1
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Hence
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F'(x)=—+x—-1—x+1_;—x-l-x+1'

This example clearly shows why the differentiation of singular integral does not obey the
classical rule. The classical rule may be applied to the singular integral when the convected
term vanishes. For instance, there is no convected term in

3 [ |
3_P|. J’n Uki(P’ q)fi(q) dvq = fﬂ aph Uu(p, q)fi(q) dvq'

We return now to the equation (11) for which we want to calculate the convected term in a compact
form. As for the calculation of (6), we make use of the expansion (7). To within the term of order of
0(n?), by taking account of é} =0 and e[ = aT8;, we find that

- [, 3ulr. QXUQI+ HQIM(Q 5o = [T ) + 3 ST, (1)

Consequently, the desired integral expression of the gradient rate is given by (n—>0):

ins(p)= = [ 2= Tu(p, QUi(Q) dSe+ f 2 Uu(p, Q)i(Q) dSq+ j Ui, 0)f(q) dv,
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The stress rate is then expressed as follows:
G = (i +,3..)+_2.E_"_uk3 —2uél -2 (..l..f_”.)aj's..
i = Wy Ujs) + 750 Bedy j =2, i

The convected terms of eqn (13) and those corresponding to the stress rate cannot be neglected.
For instance, with v = 0.3, the convected terms of eqn (13) are respectively equal to 0.47 é4
and 0.62aT3,. Omitting the plastic additional term in the iterative scheme would result in
systematic error at each time the stress rate is calculated. We will see, through some analytical
solutions, that eqn (13) without the convected terms leads to wrong results.

THE ESHELBY INCLUSION PROBLEM

Consider the particular problem of an infinite isotropic elastic body containing an elasto-
plastic sphere C. The body is subject to f,=0 and to the nullified boundary conditions at
infinity. That is the displacement and the stress rate are required to decay at infinity like
iy=r0,Q) and £ =r"%0, Q). Therefore, the surface integrals of (13) vanish identically.
Assume now that the inclusion has a homogeneous plastic strain rate. We have to prove,
according to the Eshelby theory, that the self equilibrated stress field, resulting from this plastic
strain rate, is also homogeneous in C. It is sufficient to show that the integral of (13) extended
over C - B,(p)

=é 9 —é 2
A= e adom-d [ o,

vanishes identically for any point p within C.
First we note that, the kernels being regular in C — B,, the integration by parts is allowablet

A=-a{]_3ue.om@ds,- [  Zu(p. Om(a) as. (14)

where n, is the unit outward normal to the sphere 3C or dB,. Remark that éf is a deviatoric
tensor

€i2u(p, q) = 2ué] ﬁ; Uu(p, 9)- (15)
Next, for any sphere S containing the point p, we have the identity
d 1 1
L P Un(p, @)nn(q) Sy = — o Sudy + WR(1=3) (8udn + Sindy + 8. (16)

Equations (14)-(16) give A =(. Thus the strain rate and the stress rate in the inclusion C are
homogeneous and given exactly by our convected term:
éu(C) = Béfu(C) am
an(C) =2u(B ~ 1)éR(C) (18)
where B = (8 — 10v)/15(1 ~ »). Formulae (17) and (18) are in accord with Eshelby’s solution.

Note that the coefficient 8 can also be found in the theories of polycristal aggregates (see
Kréner [9], Budiansky and Wu[10], Bui[11]).

THE THERMAL INCLUSION PROBLEM
The problem of a spherical inclusion C embedded in an infinite elastic medium and subject
to uniform thermal strain €™ can be solved in elementary manner. Let us consider the infinite

tThe rule of integration by parts is not generally valid for singular integrais (see Mikhlin[5]).
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medium with spherical cavity of radius R. Applying the normal stress o at the cavity results in
the radial displacement u™ at r= R:

M__R(1+v)
u’ = 3 o (19)

where E denotes the Young modulus. Next, consider the uniform expansion of the sphere C of
radius R, under the same normal stress o applied to its boundary, while the thermal loading is
applied to it. The displacement at r = R can be easily shown to be

n_R1-29)

B oM+ Re. (20)

u

By equaling (19) and (20), we obtain the applied stress and the strain in the inclusion

M_ _ 2Ee”
R T
=1ty 1
‘=317 5 21

The result (21) agrees with eqn (13) because the integrals of (13) vanish here. Once again, the
example confirms that the eqn (13) without the convected terms leads to incorrect resuit.

CONCLUDING REMARKS
It can be concluded that correct differentiation of a singular integral yields additional terms,
just like the integration by parts of a singular integral gives an extraneous term, as shown in a
previous paper [8]. Due to the singular nature of the kernel and of its derivatives, the derivation
of the strain rate from the field equation must be done carefully. This difficulty has already been
recognized in the unpublished works{12, 13] which are brought to the author’s knowledge by
one reviewer.
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